The Internet of Things

Surely by now you have seen this term somewhere, maybe even subconsciously. This term (or its acronym IoT) has been used to describe anything and everything with an internet connection to the point that the average consumer probably has no idea of its meaning.  The idea is really pretty simple though. Newer devices should have internet linked controls, like an API, or a web interface meaning that following a random IP is more likely to lead you to a device than a person at a computer. In truth, very few devices really need to be called part of IoT. Most IPs today connect to a computer of some kind, with a small number of exceptions. There are some Internet capable thermostats, a few home automation controllers, and even a toaster with internet connections qualifying them as IoT, but the smart TVs and netbooks being advertised as such should probably not qualify.

Intel Edison

May I present to you, the exception to my above rant. Developer devices, such  as the raspberry pi have always had the potential to qualify, but more often than not in my experience, people use them as small portable computers. The Edison is a little bit different.

The board featuring a rare appropriate use of IoT

The board featuring a rare appropriate use of IoT

This board is a fraction the size of a raspberry pi, because it cuts down on a few notable things. Everything, for example. There is no hdmi, no usb, no ehernet connector; just a single ridged port on the bottom in an unfamiliar form. This device is not intended to be your portable media device. It is a true member of the Internet of Things. With one of the “blocks” (boards which connect to the weird connector and extend functionality) you can add GPIO pins, usb power, and a serial connection. Other blocks can add batteries or sensors to increase the use of the device, but for this post, I am going to focus on the just the one board.edison_board

Soldering in the 4×14 GPIO pins, connecting the 2 microUSB slots to a computer and opening a serial connection reveals a teeny tiny linux machine. It runs a smaller distro than the raspberry pi called “Yocto” in order to handle its limited computing power and memory. Clearly, this is not meant to replace anyone’s laptops. Instead, Yocto is the perfect size for utilizing the other huge benefit of the Edison: a built-in wifi antenna. No more dongles, no tethering oneself to an ethernet port, just a wirelessly connected computing machine. Configuring the built in wifi over the serial connection allows for SSH access on the network, meaning one more cable could be eliminated. Conceivably, the serial/power block could be replaced with a battery once SSH is established, and it could be completely wireless.


What good is a computer without netflix?

Most developers I’ve given this pitch to are already drooling at this point, but for those who are yet to see the implications here, let me explain. This device can run an app, control hardware, or even just host a website. Setting up an IP for the Edison means you can run computations on it, control things from its GPIO pins, or connect to hosted content over the internet, with no human interaction required. Personally I have 2 IoT projects currently in development on my Edison (blog posts on both to come, but feel free to check out the first here) which can be loaded and set free, interfacing only through an API. Clearly this is not a device for consumers, but rather a platform for developers. This is the current state of much of the internet of things, and probably will be until widespread use of home automation and web-based controllers begins. So no, it won’t stream netflix to you, but with the right software, it could dim the lights, turn up the speakers, and play the movie with the push of a button on a website.  Personally, I think that’s pretty cool.

I am trying to work more on the two projects in progress on the Edison in order to release a blog post about at least one of them next Friday, so stay tuned for that. Until next time, raise a class and code on.